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ENERGY FLUX EQUALIZATION: AN OPEN BOUNDARY 
CONDITION FOR NON-LINEAR FREE SURFACE FLOWS 

SRIDHAR JAGANNATHAN 
The Glosten Associates, Inc., 600 Mutual Life Building, 605 First Avenlce, Seattle, W A  98104, U S A  

SUMMARY 
In the simulation of non-linear free surface flows in a finite domain a major concern is with the radiation 
condition to be applied at the 'open' boundary. No general theoretical radiation conditions are known to 
exist. In this paper a new open boundary condition is formulated based on energy flux equalization between 
the non-linear inner domain and a linear outer domain. The non-linear flow in the inner domain is solved 
numerically using a semi-Lagrangian procedure. The energy flux arriving at the open boundary is removed 
using a new open boundary condition which acts as a linear wave absorber. For the cases studied the 
performance of this boundary condition is found to be quite good. 
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1. INTRODUCTION 

The use of linear hydrodynamic analysis has become quite commonplace and the results of such 
analysis are quite satisfactory for many engineering problems. Moreover, considering the 
essentially stochastic nature of the oceans, the use of linear analysis and hence superposition of 
solutions has led to the widespread use of spectral methods and impulse response function 
techniques. The domain equation for the velocity potential, assuming the fluid to be incom- 
pressible and the flow irrotational, is the Laplace equation, which is linear. Non-linearities are 
introduced into the problem through the boundary conditions at  the free surface and on the body. 
In a linear solution these boundary conditions are linearized, leading to the requirements that the 
free surface elevation and the body remain in close proximity to their mean positions. This then 
precludes steep waves and large body motions. However, these non-linear effects are extremely 
important, particularly in the context of survivability at sea. There have been numerous cases of 
small vessels capsizing in rough seas. With the increasing number of offshore structures, 
appropriate methods of analysis are needed to evaluate the behaviour of such structures under 
extreme conditions to ensure safety at sea. In recent years considerable progress has been made in 
addressing free surface and body non-linearities directly in the time domain.'V2 

The particular hydrodynamic problem of interest here is that of two-dimensional non-linear 
free surface flows in the horizontal-vertical plane. The method of solution is a semi-Lagrangian 
time-stepping procedure first used by Longuet-Higgins and Cokelet.' This procedure permits the 
satisfaction of the non-linear dynamic and kinematic free surface conditions. Vinje and Brevig3 
modified this procedure for solutions in the physical plane. This modified method is used as the 
basic method of solution in which the new boundary condition is embedded. The mathematical 
formulation for this solution technique is described in detail in Reference 4. 
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It is often necessary to introduce artificial boundaries to limit the domain of computation. 
Boundary conditions are then needed at these artificial boundaries to ensure a unique solution. 
Moreover, the ‘open’ boundary conditions should be such that the solution so obtained will 
closely approximate the solution that would exist in the absence of the artificial boundary, i.e. the 
open boundary conditions should not distort the solution in the interior domain. For non-linear 
free surface problems no general open boundary conditions are known so far. Many individual 
approaches have emerged, such as those of Hedstrom’ for non-linear hyperbolic systems, Rudy 
and Strikwerda6 for Navier-Stokes flows and Engquist and Majda7 for a class of wave equations. 
A review of open boundary conditions is provided by Jagannathan.* In this paper a new open 
boundary condition based on energy flux equalization is proposed. 

2. ENERGY CONSIDERATIONS 

The problem of open boundaries may be posed in terms of the amount of energy that should 
be permitted to leave the computational domain through the open boundaries.’ In a two- 
dimensional horizontal-vertical plane, consider a finite domain R and its boundary 
C = C, u CB u C, u C F ,  where C, is a vertical plane on the left side, C, is the bottom boundary, CF 
is the free surface boundary and C, is the open vertical boundary on the right side. Let free surface 
waves enter the domain through C, and exit through C,. Let E ,  denote the total energy of fluid 
motion in the domain a. The energy theorem of John’ (see also Reference 1) states 

r 

where u,, is the normal velocity of any physical boundary. Let EL be the rate at which energy 
enters the domain through C,. In view of the boundary conditions at C,, CB and &, equation (2) 
may be written as 

since u, = 4, = 0 for CB; p = 0 and un = 4” for C,. The second term in equation (3) is the energy flux 
from the open boundary C,. This boundary may be perceived either as a rigid movable boundary 
where 4,, = u,, or as an analytical open boundary without a physical boundary, i.e. un = 0. In any 
case, let E,  denote the energy flux at the open boundary C, and hence we get 

(4) EL( t )  - En( t )  = kR ( t ) ,  

i.e. 

rate of energy input into the system-rate of energy capture by the system 
=rate of energy flux from the system. 

The integral of equation (4) is also equally valid: 

E,(t)--E,(t)= Mt), 
i.e. 
total energy input into the system -total energy captured by the system 

=total energy flux from the system. 



ENERGY FLUX EQUALIZATION 795 

The choice of an open boundary condition would implicitly define the energy flux out of the 
open boundary and hence by equation (4) would also determine the energy accumulation inside 
the fluid domain. Thus an improper open boundary condition would lead to improper accumu- 
lation of energy in the domain (i.e. through reflections) and to a progressive deterioration of the 
solution. Equations (4) and ( 5 )  may be used to monitor the accuracy of the numerical solution. In 
particular, for steady state problems the average rate of energy input should equal the average 
rate of energy flux from the domain. It should, however, be noted that the occurrence of a steady 
state does not necessarily imply that the solution is correct. The application of improper 
boundary conditions during the approach to steady state could clearly lead to a false steady state 
solution for non-linear problems. 

It is intuitively attractive to wonder whether an open boundary condition may be obtained 
using energy flux considerations. In Reference 8 this problem is approached from two viewpoints, 
namely that of energy flux maximization and that of energy flux equalization. In this paper we 
look at the energy equalization scheme, where the optimal motion of the absorption boundary is 
sought based on the consideration that the incident energy flux from the inner domain is equal to 
the energy flux radiated to the outer domain. 

3. ENERGY FLUX SCHEMES FOR LINEAR PROBLEMS 

Consider two-dimensional linear waves from x = - o to be incident upon a termination at x = 0. 
If the termination boundary were stationary then the waves would be reflected, causing standing 
waves. We seek the optimal motion of the termination boundary which, based on the principle of 
equalization of energy flux, would minimize reflection and give a progressive wave solution. 

The velocity potential is required to satisfy 

V2q5=0 in 0, 

& = O  at y =  -h,  (7) 

q5,=i(y, t )  at x=O. (8) 

Let us first consider that there is no termination boundary at x=O. The incident two- 
dimensional linear waves from x = - 03 are allowed to pass unhindered to x = co. The normal 
velocity of the fluid particles at the plane x = 0 is then given by &(y,  t ) .  Consider now that at x = 0 
we impose a rigid termination boundary such that the normal velocity i ( y ,  t )  of this boundary 
equals the exact solution q5&, t )  of the incident wave in the absence of the termination boundary. 
Clearly the rest of the fluid would not ‘know’ that a rigid termination boundary has been imposed 
in the flow. All the incident energy is then ‘absorbed’ by the termination boundary and there is 
neither a reflection of progressive waves nor any local disturbance. This perfect absorber is 
possible if the exact behaviour of the wave is known. For general flows (linear or non-linear) the 
exact solution at the open boundary is not known and hence the exact termination boundary 
solution to be used is also not known. Suppose that, owing to this difficulty, we impose some 
arbitrary termination boundary, say a piston or hinge type in the simplest case. How then is the 
motion of this boundary to be obtained? The proposition advanced here is that the boundary 
motion is to be such as to equalize the incident flux to the radiated flux at the termination 
boundary. In this paper this proposition is examined for problems with simple termination 
boundaries. In general the termination boundary can have an infinite number of degrees of 
freedom. The analysis here will be restricted to one and two degrees of freedom. 
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3.1. Single degree of freedom 

carried out in the time domain. 
The termination boundary is considered to have a single degree of freedom and the analysis is 

The velocity potential is required to satisfy 

0) V24=0 i n n ,  
(ii) 
(iii) 

4,=0 ony=-h ,  
linearized free surface conditions," 

(iv) 4Jy ,  t )  = a( t )b (y )  at the termination boundary x =0, (9) 
where a( t )  is the time-dependent part of the absorber velocity (to be determined) and 6 ( y )  is the 
absorber shape function (which is chosen). 

In particular we have: for a 'piston' wave absorber, 

6(y)= 1; 

6tY) '(Y +h) /h .  

for 'hinged' wave absorber of height h hinged at y = - h, 

Let the total velocity potential be 

4(x> Y, t ) = 4 1 + 4 D + 4 R ?  (10) 

where dI is the imposed incident velocity potential such as due to a small-amplitude Airy wave,'O 
is the diffracted velocity potential due to the presence of the termination boundary and r$R is 

the radiated velocity potential due to the motion of the termination boundary, satisfying 
conditions (i)-(iii) above and the condition at x = O  as 

At*= b(t)8(Y), 4 D x  = - 4 l x .  

Following Cummins," the solution for 4R is 

~ R ( X ,  Y, t)=b(t)4*(X, y)+ y( t - t )b( r )d~ ,  (1 1) s1 m 

where 4* denotes the instantaneous contribution and y ( r )  the delayed contribution to the 
velocity potential arising from the motion of the wave absorber. 

The pressure due to 4R is 

W R  

at 
p =  - p - .  

The hydrodynamic 'force' on the wave absorber is therefore 

0 

= u ( t ) p /  @ * d ( y ) d y + p r  6(y) dy 1 ci(r)dz. 
- h  - h  - m  

(13) 



ENERGY FLUX EQUALIZATION 797 

where 

M h = p  $*G(y)dy=‘genuine’ added mass, s: h 

G(y)dy = retardation function. 

Rather than solve for k f h  and K ( z )  directly as shown above, it is more convenient to solve for 
them on the basis of the frequency domain added mass and damping coefficients for the wave 
absorber as detailed in Appendix I. 

Let the wave excitation force on the absorber from the inner domain be 

F,( t )= --P (41r+4Dr)8(Y)dy- (16) s: h 

Clearly the work done on the absorber from the inner domain due to the incident potential is 
F, ( t )d ( t ) .  The work done by the absorber into the outer domain is due only to the radiation 
potential, which equals -Fo(t)u(t). Equalizing the incident work to the radiated energy, we get 
from equations (15) and (16) 

Mhii(t) + 1: K ( t  - z)d(z)dT = F,( t). (17) 

This is an integro-differential equation for the optimal motion a( t )  which equalizes the incident 
energy flux to the radiated energy flux. 

3.2. Two degrees of freedom 

carried out in the time domain. 
The termination boundary is considered to have two degrees of freedom and the analysis is 

The velocity potential is required to satisfy 

(i) Vz4=0 in R, (18) 

(ii) & = O  on y=-h, (19) 

(iv) 4JY? t )  =4(W, (Y)+ W ) ~ Z ( Y ) ,  (20) 

(iii) linearized free surface conditions, 

where ai( t )  is the time-dependent part of the absorber velocity in d.0.f. i and G,(y) is the absorber 
shape function for d.0.f. i. 

Let the total velocity potential be 

$(% y, t)=4[+4D+4k1)+4kZ), (21) 

where 4$) is the radiated velocity potential of the absorber in d.0.f. i, satisfying conditions (i)-(iii) 
above and the condition at x = 0 as 

46’?=4(t)61(y), 4k2 = 4(WZ(Y), 4 D x  = - 41x. 

As before, the radiation potentials may be represented as 

46”= 4(W:(x,  Y)+ (22) 
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Let us define 

(summation convention not implied), where 

M . . = p  47Gi(y)dy=‘genuine’ added mass, 
” 

Kij(t- . )=p ~ ~ j ~ ~ ~ )  Gi(y)dy = retardation 

Let 

function. (25) 

(26) 

be the excitation force on the absorber in mode i from the inner domain. 
Mij and Kij may be obtained from the frequency domain added mass and damping coefficients 

as shown in Appendix I. The energy flux equalization process for the degree of freedom i then 
yields 

Mijiij(t)+ Kij(t - t) Uj(t) d t  = FiI(t) (27) I:, 
(tensor notation for index repetition used). This is a pair of coupled linear integro-differential 
equations for the optimal motions in two degrees of freedom which equalizes the incident and 
radiated energy fluxes. 

4. ENERGY FLUX EQUALIZATION FOR NON-LINEAR PROBLEMS 

In the previous section the optimal motion of the linear absorber with a linear forcing function 
from the inner domain is given by equation (27). We propose to extend this formulation for non- 
linear waves generated in the inner domain shown in Figure 1. 

Consider now the energy flux incident upon the termination boundary from the inner domain. 
If at any instant in time $ ( t )  represents the velocity potential at the termination boundary, then 
we have for a single-degree-of-freedom wave absorber 

4 A Y 9  t)=a(W(Y). 
The energy flux from the inner domain is given by 

$,( t )  = 1:; p bX dy = y’ p a(t)6(y) dy = 6( t )  1:; p 6 (y) dy = d ( t ) F , (  t ) ,  

F,(t)= j:: Pd(Y)dY 

(28) 
- h  

where 

is the hydrodynamic ‘force’ on the wave absorber from the inner domain. 
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Figure 1. Definition sketch 

Equating the energy flux from the inner domain to the energy flux into the outer domain, we 
get 

-&At) = E&), 

and hence from equations (15) and (28): 

- ci ( t )F,(  t )  = ci( t ) F ,  ( t ) ,  

i.e. 

MhU(t) + K (  t - ~ ) d (  Z) dz = F, ( t ) .  (29) 1: 30 

This is an integro-differential equation for the optimal motion a( t )  of the wave absorber which 
equalizes the incident energy flux to the radiated energy flux at every instant in time. 

Similarly, for the two degree-of-freedom wave absorber we have 

where 

Hence, analogously to equation (27) we get 

MijUj( t )  + 1: Kij(t-r)cij(r)dr = F,(t). 

Note that in equation (29) the left-hand side denotes the hydrodynamic force due to a linear 
outer domain problem and the right-hand side denotes the forcing function from a non-linear 
inner domain problem. The extension to a non-linear outer domain is possible using a Volterra 
kernel approach for the wave absorber. 
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For the non-linear case we may say in general that 

-Fo= Y(u(t), ci(t)) for t > O ,  (32) 

where Y is a functional of the functions u( t )  and d ( t ) .  In correspondence with equation (27) for the 
linear case, our hypothesis is that the optimal motion of the wave absorber for the non-linear case 
may be obtained as the solution of 

Y(U( t ) ,  ci( t ) )  = F,( t ) .  (33) 

The determination of the functional Y has received some attention in hydrodynamics. For a 
ship of mass m the solution for motion in yaw was assumed by Bishop et aL12913 in the form 

my1 = Y(Yl(t)). (34) 

This functional Y was then assumed expandable in a Volterra series as 

However, the hydrodynamic problems associated with the determination of the Volterra kernels 
were not formulated by the authors. 

The solution for Y( t )  may be obtained by applying the analysis of Gu0,I4 whose solution 
consisted of a set of integral equations in terms of the time-dependent Green function. It may also 
be possible to obtain the solution using higher-order transforms as follows. 

In general the Volterra series operator with kernels h, may be given as 
a, 

where 
” ” 

y,(t)= J . . . h,(t l , .  . . , z,)a(t-z,) . . . a(t-t ,)dtl  . . . ds,. (37) 
n-fold 

The Laplace transform of the kernels is defined as 

H,(sl , .  . . , s , ) = j . .  . ~ h , , ( z , ,  . . . ,z,)exp[-(s,r,+. . . + s , ~ , ) ] d t ~  . . . dz,, (38) 

where H, is denoted the nth frequency domain kernel. 
Suppose the input is a multitone given by 

K 
a ( t ) =  C aiexp(sit); 

i =  1 

then the solution for the nth-order component is 

(39) 

The Fourier transform components are obtained from the above with s = f jw.  In particular, 
if K = 1 (i.e. the input is only at frequency w and amplitude a), then the solution to first order is at 
frequency w, the solution to second order contains frequencies 0, 2w and so on. 
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For our wavemaker problem we suggest that the Volterra kernel h, may be obtained as 

h , ( t l , .  . . ..,,)=I. . . ~ H , , ( s , .  . . . ,s,)exp[-(s,t,+. . .+s,z,)]ds, . . . ds,, (41) 

where the H,(sl, . . . , s,) are obtained from the frequency domain boundary value problems up 
to the desired order. It may be noted that this is the procedure followed for the first order and the 
generalization here is for higher o rdw.  

5.  NUMERICAL SOLUTION PROCEDURE 

The solution to the non-linear forced body motion problem in the inner computational domain is 
based on simulation with discretization in both space and time. As defined in Section 2, the right- 
side boundary & is taken as an open boundary. In the present case the open boundary is taken to 
be a single-degree-of-freedom linear wave absorber whose motion is determined on the basis of 
equation (33). For this two-dimensional problem, with potential theory being applicable (the fluid 
being considered inviscid and incompressible and the flow irrotational), the fluid motions are 
described using the complex velocity potential B. The contour C of the domain is divided into 
elements with the variable of interest ( B  or p,) being defined at nodal points. The part of the 
contour where the velocity potential $ is known is denoted C, and where the streamfunction $ is 
known it is denoted C ,  (and similarly for 4, and +t ) .  When the body is in the interior of the 
domain, a 'branch cut' is taken out to the body to permit the latter to be considered part of the 
boundary for computational purposes. Details of the numerical solution procedure are given by 
Jagannathan.4 

The process of simulation can be described in terms of two stages for each time step: (a) solution 
of a well-posed boundary value problem for (and 8,) at a fixed instant in time and (b) evolution 
of variables all over C to set up the boundary value problem for the next instant in time. 

The retardation function is determined as shown in Appendices I and 11, with a high-frequency 
approximation for the damping coefficient beyond a frequency oH: 

2 "  
6 (6) COS( 6 t )da  + - b ~ (  6)COS (6t)da I. 

and 

where b(o) is the damping coefficient for the wave absorber. 
The following steps may be used to implement the open boundary condition. 

(a) Choose wave absorber 

freedom+.g. a hinged plate attached to the bottom. 
Choose the kind of wave absorber in terms of its shape function and number of degrees of 

(b) Obtain frequency domain characteristics 

the outer domain. These are the added mass and damping coefficients rn,,(o) and b(0) .  

Figures 2 and 3. 

Obtain the wave absorber's frequency domain characteristics in terms of its wavemaking into 

For the hinged plate these are explicitly derived as equations (55 )  and (56) and are shown in 
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Figure 2. Added mass coefficient for wave absorber (hinged type): W, frequency domain solution; *, impulse response 
solution 

(c) Obtain time domain characteristics 

The time domain characteristics of a system can be obtained from its frequency domain 
characteristics by convolution. The time domain retardation function defines the system response 
due to impulsive motion and is obtained from the frequency domain added mass and damping 
behaviour. Equations (45) show the derivation of the retardation function based on b ( o )  and m(o). 

For the hinged absorber, since b ( o )  and m(o)  are explicitly known, we can obtain the 
retardation function K ( z )  and the ‘genuine’ added mass M,,. The latter is a single value whereas 
the retardation function depends on the time lag z. As can be seen from equation (17), the 
retardation function K ( z  - a )  denotes the hydrodynamic force on the wavemaker at time z due to 
a unit velocity at time z. 

Once we know M,, and K(z) ,  we are ready to solve any kind of inner domain problem with our 
wave absorber as the open boundary. 

(d) Solve inner domain problem at time z 

Solve the inner domain problem detailed in Reference 4 at some time t with the open boundary 
condition being the known velocity of the wave absorber at time z. Hence obtain the forcing 
function F,( t )  such as given by equation (28). In effect, the interior solution is forcing the wave 
absorber to respond. 
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Figure 3. Damping coefficient for wave absorber (hinged type): ., frequency domain solution; *, impulse response 
solution 

(e) Solve for wave absorber motion at time T + AT 

Solve the wave absorber velocity at time T +  AT using equation (29). Note that M,,, K ( t - t ) ,  ci(z) 
and F , ( t )  are known. Hence the acceleration i ( z )  can be obtained that yields the velocity Li(z + AT)  
for use at time z + A z .  

( f )  Repeat steps ( d )  and (e) 

Repeat steps (d) and (e) to obtain the solution to the problem. Suitable checks, such as energy 
balances and wave reflections, may be used to monitor the fluid behaviour in the inner domain. 

6. RESULTS AND DISCUSSION 

To investigate the efficiency of the energy flux equalization procedure, a forced wavemaker 
problem was chosen. The left-side boundary is considered in hinged-type wavemaker with a 
forced sinusoidal motion of amplitude 0 0 0 5  ft at a frequency of 3 rad s - l  in water of depth 7 ft. The 
energy flux equalization procedure to be applied at the right-side wave absorber is based on 
Section 3 and corresponds to the velocity potential in the outer domain satisfying linearized free 
surface conditions. However, the forcing function derived at the open boundary (i.e. at the wave 
absorber) is based on the non-linear inner domain where non-linear free surface and body 
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Figure 6. Energy input by port-side wave maker (hinged type): W, non-linear simulation; 0, frequency domain amplitude 
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Figure 10. Optimal absorber boundary motion (hinged type): ., non-linear simulation; 0, frequency domain amplitude 
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conditions are satisfied. Figures 2 and 3 show the added mass and damping function for the linear 
absorber, derived using two methods: the frequency domain solution (m) and the impulse 
response solution (*). The two solutions are practically identical, indicating that the retardation 
function is accurate. Figures 4 and 5 shows the energy absorption and optimal boundary motion 
for a sinusoidal forcing function corresponding to a standing wave given by equation (19). The 
frequency domain and impulse response solutions are seen to be identical. The energy flux 
amplitude ratio L is 0.017 for this case' and the absorption characteristics are clearly quite good. 
Our aim now is to incorporate this absorber into the non-linear simulation procedure. 

The length of the inner domain is chosen as 1.5 times the wavelength corresponding to the 
frequency of oscillation of the left-side wavemaker. A free surface wave corresponding to the 
amplitude of the wavemaker motion is imposed at t = 0. The expected solution of the starboard- 
side absorber is a motion antisymmetric with respect to the wavemaker. One hundred equally 
spaced nodes were used on the free surface, 28 nodes on each side boundary and 20 nodes at the 
bottom. Figure 6 shows the energy input to the domain by the wavemaker. Figure 7 shows the 
response of the wave absorber derived with the forcing function obtained from the non-linear 
simulation procedure. The corresponding energy absorbed by the open boundary is given in 
Figure 8. Clearly the optimal boundary motion and energy absorption compare quite well with 
the frequency domain solutions. 

The same problem was then repeated with no initial free surface elevation. The wavemaker 
starts from rest. Figure 9 shows the energy input by the wavemaker to the domain. The optimal 
motion of the absorber is given in Figure 10. The amplitude of motion approximately equals the 
frequency domain solution, but some slight peaks and troughs are noticeable. The energy 
absorbed corresponding to this motion is shown in Figure 11. The comparison here with the 
frequency domain solution is fair, with the occurrence of peaks and troughs more evident. This is 
because the energy flux varies as the square of the motion and the errors are thereby made more 
evident. The error in the boundary motion is less than 2% and that in the energy flux about 4%. 

The numerical procedure was found to be sensitive to the method of integration as well as to 
the resolutions in space and time. The evolution of the free surface in time was solved 
simultaneously with the optimal motion of the absorber with a fourth-order Runge-Kutta 
algorithm. The time step used was one-hundredth of the oscillation period. The intersection of the 
absorber with the free surface gives rise to a logarithmic singularity which has to be treated 
properly, since the free surface elevation at  that intersection point contributes to the forcing 
function for the absorber motion. At the intersection point the velocity potential is obtained from 
the free surface condition and the streamfunction from the absorber (i.e. the intersection point is 
fully determinate in terms of the boundary value problem). It is found that the vertical velocity of 
the intersection node is best approximated by backward spatial differentiation of the velocity 
potential along the absorber rather than backward differentiation along the free surface or 
complex differentiation around the intersection. 

7. CONCLUDING REMARKS 

A general open boundary condition for non-linear free surface flows has been formulated based 
on the consideration of energy flux equalization between an inner non-linear computational 
domain and an external linear flow field. The procedure for linear single- and two-degree-of- 
freedom wave absorbers has been detailed, with the optimal solution obtained in the form of 
coupled integro-differential equations. The extension to non-linear wave absorbers has been 
formulated. 
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The performance of the open boundary condition based on energy flux equalization is quite 
good for the non-linear free surface problems that were investigated. For the case of the unsteady 
wavemaker problem the approach to the steady state is monotonic and the steady state is 
maintained with some low-frequency oscillation. Further numerical experiments will be required 
to study the systematic improvements in this procedure associated with choice of shape functions 
and the number of degrees of freedom of the wave absorber. 
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APPENDIX I: TIME DOMAIN ADDED MASS AND RETARDATION FUNCTION 

Let indices i and j denote two degrees of freedom for the absorber. The 'genuine' added mass M i j  
and retardation function K i j  in mode i for operation in mode j are defined as 

where h is the water depth, di(y) is the shape function in mode i and 4; and y j  are parts of the 
radiation potential as defined in equations (22) and (23). 

Following CumminS," the correspondence with frequency domain coefficients is invoked to 
obtain 

M i j =  mij(ol) +- Kij(t-z)sin(o, z)dz, (45a,b) 

where mij is the frequency domain added mass for the absorber in modes i and j ,  bij is the 
frequency domain damping coefficient for the absorber in modes i and j and o1 is any arbitrary 
frequency. 

The frequency domain added mass and damping coefficients are obtained as follows. Let the 
absorber with shape function dj(y) execute simple harmohic motion at frequency o (Figure 12): 

0 1  r 0 2 "  
Kij( z) = rr I0 bij (o)cos (or )do, 

a( y, t ) = S j (  y)cos( crt). 

Shape Funct ion 

6, (Y) 

Figure 12. Definition sketch for wave absorber BVP 
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The solution for the velocity potential satisfying the domain equation and boundary conditions 
at the free surface, at the bottom and at infinity is’O 

m 

4(j)=boj$o cos(k,x--at)+ C bnj$ne-knx sin(at), (46) 
n =  1 

where 

a2 = gk, tanh( k, h), az=gkn tan(k,h), 

$o(~)=co~h[ko(y+h)l ,  $n(~)=cos[kn(y+h)l, n = l , .  . . ,a. 

The boundary condition at x = 0 is 

4 $ ) = i ( y ,  t)= -crdj(y)sin(at ). (47) 

Hence, using equations (46) and (47) and the consideration of orthogonality of the functions 
$ O ( Y )  and $ n b ) ,  we get 

where 
0 0 

1~5) = J- dj(Y) $0 (y)dy, I;:)= dj(y)$n(y)dy, 

0 0 

I?= 1 $,2(Y)dY> n=l, . . . , co. (48b) 
- h  

I‘d’= 1 *3Y)dY, 
- h  

The pressure at x = 0 is 
m 

p i =  - p + y ’ = p a b o j $ ,  sin(at)-p C c~b,~$~cos(at). (49) 
n = l  

The hydrodynamic force F, in mode i due to pressure in mode j is defined as 

where di(y) is the shape function of the absorber in mode i. Using equation (49) in equation (50), 
we have 

F, = mij( a) [ - a’ cos( at)] + bij( a) [ - 0 sin( at)], (5 1) 
with 

P “  
a 

rnij(o)=added mass for modes ( i j )=- 1 bnj1$),  

bij(a)=damping coefficient for modes ( i j ) =  - pbojlb:’, (52)  
where 1::) and lh,) are defined for mode i according to equations (48b). 

With the added mass and damping coefficients known from equations (52), the genuine added 
mass Mi, and retardation function Kij can be obtained from equations (45). The choice of at is 
arbitrary, but a high-frequency a1 is preferable, since thereby the errors of discretization 
and integration are less important. Also, different values of a1 should be used to check that the 
Mij value is constant. 
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For a single-degree-of-freedom system (as in Section 3.1) defined by, say, mode i, the procedure 
is identical to the above and the notation used is 

Fh = Fii = hydrodynamic force, 
Mh = Mii =‘genuine’ added mass, 

K(t)= K i i ( t ) =  retardation function. (53) 

APPENDIX 11: ASYMPTOTIC AND LIMITING CASE ANALYSIS FOR WAVEMAKER 

For a single degree of freedom the equation for optimal motion of a wave absorber is given by 
equation (17): 

MhU( t )  + K ( t  - ~ ) b (  T)dt = F,( t ) ,  1: m 

where M h  is the genuine or infinite frequency added mass and K ( T )  is the retardation function 
given by equation (45a): 

The damping coefficient b(a) is determined as shown in Appendix I. Since the range of 
integration in equation (45a) is from zero to infinity, it is convenient to determine the retardation 
function as 

where b(a) is determined as per Appendix I and &(a) is an approximation for b(a) for frequencies 
higher than a suitably high frequency aH. Our intent now is to determine the expression bH(a) for 
the hinged and piston wavemakers. 

The added mass and damping coefficient for a wavemaker operating sinusoidally at a 
frequency a are given in Appendix I as 

where 

Case I .  Piston wavemaker 

1 Zb’)=- sinh(koh). 
k0 

6(Y)=1 

From equations (56) 

a 1 sinh2(koh) 2pa 2sinh2(koh) -__ 2pa 2sinhz( k, h )  
b(o)=P-T ko ko p) 0 kg 2koh+sinh(2koh) - kg 2koh+2sinh(koh)cosh(k,h)’ 

-- - 
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Now, as a+co, koh (=02h/g)+co. Hence 

For a+ co, a2 = k, h and therefore 

Case 2. Hinged wavemaker 

[k, hsinh(k, h) + 1 -cosh(k, h)], 
Y + h  1 

Ib2'=a d ( Y )  = ~- 7 h 
a a 1 sinh(k, h)  + [ 1 - cosh(k, h)]/ko h b ( f J ) = p - - O I ' 2 ' -  

0 - P - t -  I ( ' )  k, Ib') ko ko 0 

2pa sinh2(k,h)+2sinh(k,h) [l -cosh(k,h)]/k,h+[l -cosh(k,h)]/k,h -- - 2  
k; . 2k, h + 2sinh(k, h)cos(k,h) 

As a+co, kh (=a2h/g)+co and hence 

as a+co. 2PY2 b"( a) z ~ 

a3 

Notes 

1. There is no dependence of b,(a) on h as a+co. 
2. The asymptotic approximation is the same for both the hinged and the piston cases. This is 

because, the wavelength being so small, the wave cannot distinguish between the action of a 
piston and a hinged wavemaker. In general there is no dependence on the shape function of 
the wavemaker. 

Very-low-frequency damping coeficient 

A very-low-frequency approximation to the damping coefficient is derived here to be used for 
the verification of the results obtained from Appendix I. The damping coefficient is given by 
equation (56) as: 

a I'2' 
k, Ib" 

b ( a ) = p - - o  P 2 ) .  

As 0-4, a2 =gk; h, i.e. 

and 

Case 1. Hinged wavemaker 

1-1-(k0h)2/2!+... + . . .+-- 1 -cosh(koh) ) s'(,,h +3! (kohl3 
kOh k, kOh 
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Hence, using equations (56) and (59), we get 

b(a)=.qy4’2h9/2 P as a d .  

Case 2. Piston wavemaker 

Hence using equations (56) and (59), we get 

h(a)=.pg”Zh9’2. 

InJnite frequency added mass 

infinite frequency added mass. This is determined as shown in equation (45) as 
The equation of the optimal motion of the wave absorber involves the determination of the 

k f h  = mh(0.l) -- K (  7)sin( Ol z)dz, 
6 1  Iom 

where a1 is any frequency. 

This would then serve as a check on the accuracy of K(T) .  
Alternatively, M h  can be determined by posing the boundary value problem (BVP) for CT= m. 

BVP for inJnite frequency. The free surface condition is“ 

4t r+g4y=0  on y=O, i.e. - o2 4 + qdy = 0. 

This implies 

4 = 0  aso+co. (62) 
Hence the BVP is that shown in Figure 13. 

Now 

V2@=0.  (63) 
Let @= Re(4e-’”‘) and 4 = X ( x )  Y ( y )  using separation of variables. Hence from equation (63) we 
get 

X” Y’ 
-+-=O. 
X Y  

f= 0 
/ / / / / / / / / / / / / I / /  

Figure 13. Definition sketch for infinite frequency BVP 
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Let Y"/Y=B. If B = k 2 > 0 ,  then 

Y=ccosh(ky)+dsinh(ky). 

Clearly, to satisfy 4 = 0 on y = 0 and 4y = 0 on y = - h implies c = d = 0. 
If B =  - k 2 < 0 ,  then 

Y= c cos[k(y + h)] + d sin[k(y + h)]. 

This finally yields the solution as 

Y= d,cos[k,(y+h)], 
n=1 

where knh=(2n- 1)n/2. Hence the solution for 4, imposing the condition of boundedness as 
x + a ,  is 

m 

4= 1 A,e-kn"~~~[kn(y+h)] .  

The determination of the added mass proceeds as before and it can finally be put in the form 
n = l  

where 

APPENDIX 111: NOTATION 

absorber velocity in ith degree of freedom (refers to one-degree-of-freedom (d.0.f.) 
system if i is not denoted) 
coeffieients in expansion for velocity potential 
part of contour where 4 is known 
part of contour where I) is known 
part of contour where 4t is known 
part of contour where $t is known 
energy flux 
energy input to domain from left-side boundary 
energy within domain SZ 
energy leaving right-side boundary 
wave-excitation force on absorber from inner domain 
hydrodynamic force on absorber due to radiation potential 
force on absorber in d.0.f. i due to motion in d.0.f. j (also denoted as Fo for one-d.0.f. 
system) 
wave-excitation force on absorber from inner domain for d.0.f. i 
acceleration due to gravity 
water depth 
Volterra kernels 
frequency domain response functions 
integrals for nth eigenvalues and d.0.f. i 
retardation function in d.0.f. i for motion in d.0.f. j 
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wave number 
‘genuine’ added mass for one-d.0.f. case 
‘genuine’ added mass in d.0.f. i for unit motion in d.0.f. j 
pressure 
pressure at the free surface 
velocity components in x- and y-directions 
complex velocity defined as MJ = u - iu 
absorber velocity in x-direction 
functional of a function 
point in complex plane defined as z = x + iy 

Greek letters 

complex potential defined as fi = 4 + i$ 
retardation potential for unit velocity in d.0.f. i 
shape function of absorber in d.0.f. i 
density of fluid 
wave frequency 
boundary on domain Cl 
left-side boundary 
free surface boundary 
right-side boundary 
bottom boundary 
velocity potential 
incident velocity potential 
outer domain potential 
radiation potential for d.0.f. i 
vertical eigenfunctions 
domain of definition 
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